作者Edwards, Matthew Reid
ProQuest Information and Learning Co
Princeton University. Mechanical and Aerospace Engineering
書名Ultrafast Sources of Intense Radiation
出版項2019
說明1 online resource (398 pages)
文字text
無媒介computer
成冊online resource
附註Source: Dissertations Abstracts International, Volume: 81-04, Section: B
Advisor: Mikhailova, Julia M
Thesis (Ph.D.)--Princeton University, 2019
Includes bibliographical references
Exploration at the frontiers of modern physics depends on electromagnetic radiation with almost unimaginable properties. Attosecond pulses freeze the motion of electrons. Petawatt beams accelerate particles to relativistic velocities in femtoseconds. Brilliant x-rays capture the interior structure of proteins. Lasers and laser-like sources of coherent radiation with extreme intensity, wavelength, and pulse duration promise further groundbreaking advances in both fundamental and applied science, yet surpassing current capabilities requires new methods for generating and manipulating high-intensity light. This dissertation presents a series of experimental, computational, and theoretical advances towards the development of plasma-based sources of extreme radiation with a focus on relativistic high-order harmonic generation (HHG) from plasma mirrors for high-energy extreme ultraviolet and x-ray generation and plasma-mediated parametric amplification for high-power lasers. In particular, this work offers the following contributions to laser-plasma interaction physics. A detailed experimental characterization of ultrafast plasma mirror performance over a broad range of parameters provides spectral and spatial measurements of second, third, and fourth harmonic generation for varied intensity and contrast, demonstrates relativistic harmonic generation, and relates high-order harmonic generation to plasma-mirror mechanical stability. Key features of the relativistic HHG spectrum are explained by a model for the synchrotron-like motion of plasma electrons, which includes the dynamics of the electron bunch formation and quantifies the efficiency limits and scaling of the process. Harmonic generation dramatically improves for two-color and multi-color driving beams, with a strong dependence on the exact waveform shape; the mechanism for this enhancement arises from the sub-cycle interplay between laser and plasma fields. This also leads to predicted performance improvements for cascaded plasma mirror systems. The Brillouin mechanism outperforms Raman scattering for x-ray amplification and plasma amplification in the pump depletion regime tolerates substantial incoherence. These two observations offer a route towards x-ray free electron lasers as pumps for high-power x-ray amplifiers. A powerful scattering mechanism in electron-positron plasmas is identified, along with a new mechanism for stimulated scattering in strongly-magnetized plasmas, unique in its combination of high instability growth rate and small frequency downshift. Taken together, these advances suggest a plasma-centered path towards the next generation of extreme light sources
Electronic reproduction. Ann Arbor, Mich. : ProQuest, 2020
Mode of access: World Wide Web
主題Plasma physics
Optics
Aerospace engineering
High-order-harmonic generation
Laser-plasma interactions
Parametric plasma amplification
Plasma mirror
Stimulated brillouin scattering
Ultrafast optics
Electronic books.
0759
0752
0538
ISBN/ISSN9781085641944
QRCode
相關連結: click for full text (PQDT) (網址狀態查詢中....)
館藏地 索書號 條碼 處理狀態  

Go to Top